Sunday, 30 March 2014
Test 2 thoughts
Well, in my opinion, Test 2 was fair. It tested us on things which we should have mastered a while ago through assignment 1 and 2. The first question should have taken no time to figure out as it was a matter of understanding the concept of what a binary search tree and inorder traversal is, which is not too tricky. The rest of the questions were not too difficult either. The only tricky question was the one where you had to write is_plex. To be honest, I think both test 1 and test 2 should have been more challenging because I am pretty confident that the exam is going to be lot more difficult, if this exam is anything like the previous one. Last semester, I felt the difficulty of the course suddenly took a huge spike when I started writing the exam. It was ridiculously difficult compared to what we did during the term. Hopefully the difficulty scales a lot better with this exam, or at least if the future exams are this difficult, I would at least appreciate it if the term work is also close to the exam difficulty.
Wednesday, 26 March 2014
Sorting algorithm
So recently, I just thought of a pretty efficient sorting algorithm. Suppose that you have a list of unsorted elements ranging from lets say 1 to 99. A natural first step to sorting these elements would be to look at the number in front of all the elements. Since the most digits you could have in these sets of numbers is 2, you would look at each number divided by a 10 and then converted to integer, and depending on that, a bunch of sublists can be created to hold all the smaller lists with the same first digit (0 for single digit). These sublists are now half sorted and now a sorting pass should be done on all of these sublists but by looking at the number % 10. After doing that, just put all the sublists back together again and there you have a sorted list. This is an O(n) function. First you would need to find the highest amount of digits, then you would start the sorting passes. There is a shortcoming to this algorithm when for example you have a list as follows:
[99999999999999999999999999999999, 1, 2, 3, 4, 5]
In that case there would be a ridiculous amount of sorting passes going on for each digit that the first number has. Maybe a better idea is to keep track of all the possible digit lengths and then just skip to the next smallest one if there is only one number for a specific digit length.
Subscribe to:
Posts (Atom)